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The Deterministic Navier-Stokes Equations

A general incompressible fluid flow satisfies the
Navier-Stokes Equation

ut + u · ∇u = ν∆u −∇p
u(x ,0) = u0(x)

with the incompressibility condition

∇ · u = 0,

Eliminating the pressure using the incompressibility
condition gives

ut + u · ∇u = ν∆u +∇∆−1trace(∇u)2

u(x ,0) = u0(x)

The turbulence is quantified by the dimensionless
Taylor-Reynolds number Reλ = Uλ

ν
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The Reynolds Decomposition

The velocity is written as U + u, pressure as P + p
U describes the large scale flow, u describes the small
scale turbulence
This is the classical Reynolds decomposition (RANS)

Ut + U · ∇U = ν∆U −∇P − ∂

∂xj
Rij

The last term the eddy viscosity, where Rij = uiuj is the
Reynolds stress, describes how the small scale
influence the large ones. Closure problem: compute
Rij .
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The Difference between Laminar and Turbulent

If the Reynolds number is small, only the laminar
solution exists
In this case the ambient noise is quelled
If the Reynolds number is large, the laminar solution
exists but is unstable
The ambient noise is magnified by the instabilities of
the laminar flow and becomes large
Then the turbulent solution satisfies a stochastic partial
differential equation (SPDE)
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A Stochastic Closure Theory (SCT)

Large scale flow

Ut + U · ∇U = ν∆U −∇P − ∂

∂xj
Rij

U(x ,0) = Uo(x).

Small scale flow

ut + u · ∇u = ν∆u +∇∆−1trace(∇u)2 + Noise

u(x ,0) = u0(x).

What is the form of the Noise? It will contain both
additive noise and multiplicative u · noise.



Stochastic
Closure in
Turbulence

Birnir

The
Deterministic
versus the
Stochastic
Equation

Homogeneous
Turbulence

The Improved
Closure Model

The Invariant
Measure of
Turbulence

Boundary
Value
Problems

The Spectral
Link

Conclusions

Stochastic Navier-Stokes with Turbulent Noise

Adding the two types of additive noise and the
multiplicative noise we get the stochastic Navier-Stokes
equations describing fully developed turbulence

du = (ν∆u − (U + u) · ∇u − u · ∇U +∇∆−1tr(∇u)2)dt

+
∑
k 6=0

c
1
2
k dbk

t ek (x) +
∑
k 6=0

dk |k |1/3dt ek (x)

+ u(
M∑

k 6=0

∫
R

hk N̄k (dt ,dz)) (1)

u(x ,0) = u0(x)

Each Fourier component ek = e2πik ·x comes with its
own Brownian motion bk

t and deterministic bound
|k |1/3dt
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The Kolmogorov-Obukhov Theory

In 1941 Kolmogorov and Obukhov [11, 10, 17]
proposed a statistical theory of turbulence
The structure functions of the velocity differences of a
turbulent fluid, should scale with the distance (lag
variable) l between them, to the power p/3

E(|u(x , t)− u(x + l , t)|p) = Sp = Cplp/3

A. Kolmogorov A. Obukhov
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The Kolmogorov-Obukhov Refinded Similarity
with She-Leveque Intermittency Corrections

The Kolmogorov-Obukhov ’41 theory was criticized by
Landau for including universal constants Cp and later
for not including the influence of the intermittency
In 1962 Kolmogorov and Obukhov [12, 18] proposed a
refined similarity hypothesis

Sp = C′p < ε̃p/3 > lp/3 = Cplζp (2)

l is the lag and ε a mean energy dissipation rate
The scaling exponents

ζp =
p
3

+ τp

include the She-Leveque intermittency corrections [21]
τp = −2p

9 + 2(1− (2/3)p/3) and the Cp are not
universal but depend on the large flow structure
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Why do we need a Statistical Theory of
Turbulence?

Kolmogorov’s point of view was that the fluid velocity in
turbulence was not a deterministic function but rather a
stochastic process
The reason for this was, that one had to solve the
Navier-Stokes equation in a noisy environment to
obtain the velocity. This noise had been created by the
fluid instabilities magnifying ambient noise. Once the
noise was present it could not be ignored
The consequence is that the only deterministic
quantities associated with the turbulent velocity are
statistical quantities such as the mean, the variance,
the skewness, the kurtosis and so on. We must use
probability theory or statistics to study turbulence
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The Statistical Theories of Turbulence

One can split turbulence problems into three categories
Homogeneous Turbulence
Boundary Value Turbulence (including pipe flow)
Lagrangian Turbulence

The first two categories are described by an Eulerian
observer: the observer is still and the fluid flows past him or
her. The third category is described by a Lagrangian
observer: she or he follow the fluid particles.

We will discuss the ST of Homogeneous and Boundary
Value Turbulence
The ST of Lagrangian Turbulence is currently an active
field of research
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KOSL Scaling of the Structure Functions,
higher order Reλ ∼ 16,000
Comparison of Theory and Experiments

Figure: The exponents of the structure functions as a function of
order, theory or Kolmogorov-Obukov-She-Leveque scaling (red),
experiments (disks), dns simulations (circles), from [4], and
experiments (X), from [21]. The Kolomogorov-Obukhov ’41
scaling is also shown as a blue line for comparion.
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Can we compute the Reynolds number
dependence of the structure functions?
John Kaminsky in his Ph.D. thesis

S1(x , y , t) =
2
C

∑
k∈Z3\{0}

|dk |(1− e−λk t )

|k |ζ1 + 4π2ν
C |k |

ζ1+ 4
3

| sin(πk · (x − y))|.

S2(x , y , t) =
4

C2

∑
k ∈Z3

{ C
2 ck (1− e−2λk t )

|k |ζ2 + 4π2ν
C |k |

ζ2+ 4
3

+

d2
k (1− e−λk t )

|k |ζ2 + 8π2ν
C |k |

ζ2+ 4
3 + 16π4ν2

C2 |k |ζ2+ 8
3

}
| sin2(πk · (x − y))|,

where ζ2 = 2/3 + τ2 ≈ 0.696.
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The Variable Density Turbulent Tunnel (VDTT)

The data comes from the Max Planck Institute for
Dynamical and Self-Organization, in Göttingen,
Germany (E. Bodenschatz).
The test sections are about 8 meters long so the
turbulence evolves through at least one eddy turnover
time, around 1 second.
This means that the turbulence can be observed over
the time that it takes the energy to cascade all the way
from the large eddies to the dissipative scale, see [3].
Measurements were taken from Taylor Reynolds
Numbers 110, 264, 508, 1000, and 1450.
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Fitting the data

We have to fit the system size and bring the largest
measurements into the range of the structure functions,
r/η, where η is the Kolmogorov dissipative scale.
The largest eddies may be influenced by the system
size and need to be modeled.
The large eddies should scale ck ∼ b−1 and dk ∼ a−1

for k small.
The small eddies should scale with k , ck ∼ k−m and
dk ∼ k−m, for k large.
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Results of fits

Taylor Reynolds Number a b D
110 11.6425 0.0161237 1.56917
264 9.58075 0.0523598 1.76897
508 8.31406 0.0650384 1.51799
1000 3.79242 0.0924666 1.32014
1450 2.68367 0.409223 1.3

Table: The fitted values for a, b, and D and C below.

Taylor Reynolds Number 110 264 508 1000 1450
Second 2.79532 3.31462 4.20662 7.61993 21.0531
Third 1.40022 1.92759 1.48768 2.7192 3.58878
Fourth 1.0749 1.01212 1.1907 2.35552 5.99954
Sixth 1.15286 1.28604 1.34263 1.73144 2.48915
Eighth 0.615824 .5316486 .596233 1.16513 2.84003
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Structure functions for Taylor-Reynolds number
110

Figure: Second Structure Function, Normal Scale and log-log
scale, T-R 110

Figure: Third and Fourth Structure function, log-log scale, T-R 110
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Structure functions for Taylor-Reynolds number
110 and 1450

Figure: Sixth and Eighth Structure Function, T-R 110

Figure: The Second and Third Structure Function, T-R 1450
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The Noise in Turbulence

1 The color of the noise depends on the Reynolds
number through a,b and the exponent m.

2 For small Reynolds number:

Cr =
C
2

e−2πbr +
1
2

e−2πar (r +
1

2πa
),

3 For large Reynolds number:

Cr =
C
2

b cos(2πb2r) + 2πa2r sin(2πa2r),
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The Improved SCT Model

The small scale flow satisfies the stochastic Navier-Stokes
equation,

du + u · ∇udt = (ν∆u +∇(∆−1[Trace(∇u)]))dt − u · ∇U

− U · ∇u +
∑
k 6=0

(
a

|a|2 + |k |m

)
|k |−

5
3 dtek (x)

+
∑
k 6=0

b1/2

(|b|2 + |k |m)1/2 |k |
−2dbk

t ek (x)− u
1
3

∑
k 6=0

N̄k
t dt ,

where a,b1/2, k ∈ R3, a = |a|, and b = |b|. The improved
SCT model depends on three parameters a, b and m, which
are all function of the Taylor-Reynolds number Reλ.
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The Invariant Measure and the Probability
Density Functions (PDF)

Hopf [7] wrote a functional differential equation for the
characteristic function of the invariant measure
The Kolmogorov-Hopf equation for (1) is

∂φ

∂t
=

1
2

tr[PtCP∗t ∆φ]+tr[Pt D̄∇φ]+ < K (z)Pt ,∇φ > (3)

where D̄ = (|k |1/3Dk ), φ(z) is a bounded function of z,

Pt = e−
∫ t

0 ∇u dr Mt

m∏
k

|k |2/3(2/3)Nk
t

Variance and drift

Qt =

∫ t

0
eK (s)PsCP∗s eK∗(s)ds, Et =

∫ t

0
eK (s)PsD̄ds (4)
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The invariant measure of the stochastic
Navier-Stokes

The solution of the Kolmogorov-Hopf equation (3) is

Rtφ(z) =

∫
H
φ(eKtPtz + EI + y)N(0,Qt ) ∗ PNt (dy)

Theorem

The invariant measure of the Navier-Stokes equation on
Hc = H3/2+

(T3) is, µ(dx) =

e<Q−1/2EI, Q−1/2x>− 1
2 |Q
−1/2EI|2N(0,Q)(dx)

∑
k

δk ,l

∞∑
j=0

pj
ml
δ(Nl−j)

where Q = Q∞, E = E∞.
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The N-Point Probablity Density of Turbulence

Finding the invariant measure solves the turbulence
problem
All the (deterministic) statistical properties of the
turbulent velocity are determined by the invariant
measure
In particular, the n-point probability density of
turbulence is determined by the invariant measure

G. Da Prato J. Zabczyk
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The Probability Density Function (PDF)

Lemma

The PDF is a Normalized Inverse Gaussian distribution NIG
of Barndorff-Nilsen [1]:

f (xj) =
(δ/γ)√

2πK1(δγ)

K1

(
α
√
δ2 + (xj − µ)2

)
eβ(x−µ)(√

δ2 + (xj − µ)2/α
) (5)

where K1 is modified Bessel’s function of the second kind,
γ =

√
α2 − β2.

f (x)∼ (δ/γ)
2πK1(δγ)

Γ(1)2eβµ

(δ2+(x−µ)2)
, x<<1

f (x)∼ (δ/γ)
2πK1(δγ)

eβ(x−µ)e−αx

x3/2 , x>>1
O. Barndorff-Nilsen
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The log of the PDF from simulations and fits for
the longitudinal direction

Figure: The log of the PDF from simulations and fits for the
longitudinal direction, compare Fig. 4.5 in [23].
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The Three Giants of Boundary Turbulence

Figure: Ludwig Prandtl, Theodore von Kármán and Geoffrey
Taylor. These gentlemen discovered that the turbulent boundary
layer could be divided into 4 sublayers, depending on the distance
from the boundary, namely

1 The viscous layer (closest to the boundary)
2 The buffer layer (a transition layer, boundary to scaling)
3 The inertial layer (where scaling laws apply)
4 The wake (furthest from the boundary)
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Prandtl-von Kármán log-law for fluctuations

The Prandtl-von Kármán log-law in the inertial range:

〈u〉/uτ = κ−1 ln(yuτ/ν) + B, (6)

uτ =
√
τw/ρ is friction velocity, based on wall stress τw ,

κ the von Kármán constant and B a constant

Figure: The theory was stuck until this gentleman, A. Alan
Townsend came along and proposed, in 1956, his hypothesis of
"attached eddies".
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A Log-Law for the Variation and its Moments

Townsend [22] proposed that there was a hierarchy of
eddies attached to the boundary that transferred
momentum into the buffer and inertial layer.
Townsend hypothesis can be also be used to derive a
log law for the streamwise fluctuations u′ = (u−〈u〉)/uτ

〈(u′)2〉1/2 = B2−A2 ln(y/δ) = D2(Reτ )−A2 ln(y+) (7)

This was verified experimentally by Perry [19, 20] and
the coefficients, D2 and A2 are called the Townsend-
Perry constants.
Marusic et al. [14, 13, 16, 15], Hultmark et al. [8]
proposed a universal log-law, for u′:

〈(u′)2p〉1/p = Bp−Ap ln(y/δ) = Dp(Reτ )−Ap ln(y+) (8)
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Can we use SCT to compute the Generalized
Townsend-Perry Constants?

These numerical and experimental results on the log
dependence of the mean-velocity and the powers of the
variation, indicate that the Kolmogorov-Obukhov
scaling is dominant in the inertial layer
Marusic and Meneveau [15], discovered that the
Generalized Townsend-Perry were sub-Gaussian
Can we do the same thing as was possible for
homogeneous turbulence and compute all the
Townsend-Perry and generalized Townsend-Perry
constants?
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The coefficients of the log-law for the
fluctuations

The idea of B. and Chen [2] is that in the inertial layer
the fluid flow is roughly homogeneous in the
streamwise direction
They make the natural hypothesis that

〈(u′)2〉 =
τ∗
κu2

τ

ln(y/δ), (9)

where τ∗ is the streamwise shear stress
Then they can evaluate the generalized Townsend-
Perry constants and finally they relate τ∗ to the structure
functions in homogeneous turbulence. This gives

Ap/A2 = (l∗)
ζp
p −

ζ2
2 (C1/p

p /C1/2
2 ) (10)

where ζp = p/3 + τp = p/9 + 2(1− (2/3)p/3) are the
(KOSL) scaling exponents and the Cps the coefficients
of the structure functions, l being the lag variable
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Plot of Ap/A2 as a function of p

We see that the Generalized Townsend-Perry Constant are
sub-Gaussian because of the KOSL scaling

Figure: The first few coefficients Ap, scaled by A2, as functions of
p (red triangles), compared with data (open circles) with Reynolds
number Reτ = 19,030. The gray line and squares represents the
Gaussian case. The data was generated in the FPF (Fluid
Physics Facility) at the University of New Hampshire, and the red
triangles where computed using the SCT [9].
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The Spectral Link for the Generalized
Townsend-Perry Constants

Now that the SCT has given us the fine structure in the
inertial layer the question is: can we find the mean flow
and the powers of the fluctuation in the other layers?
Let us start with the answer, as functions of y
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Viscous Buffer Inertial

Figure: The mean flow 〈u〉, black line, and the variation 〈w2〉, blue
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The Spectral Function

Luiza Angheluta showed us work that had been done
be a group of physicists at the University of Illinois in
Urbana-Champlain, G. Gioia, N. Guttenberg, N.
Goldenfeld, and P. Chakraborty [6, 5]
They had found an expression for the mean flow using
a spectral function, that we discovered was the
mathematical formulation of Townsend’s "attached
eddy" hypothesis.
The spectral function I is the amplitude of the "attached
eddy"

I
(η

s
,

s
R

)
=

2
3

∫ ∞
1

e−ξβdη/sξ−5/3

(
1 +

(
βes
Rξ

)2
)−17/6

dξ.

(11)
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The General Form of the Mean Velocity and
Variation

To get the mean velocity and variation across the layer, we
must solve the differential equations

U ′ = − 1
2κ2I3/4y2 +

1
κI3/8y

√
1− y

Re
√

f
+

1
4κ2I3/4y2 (12)

with the boundary condition U = 4.17 at the beginning of
the buffer layer y = 4.17. For the fluctuation we have to
solve the differential equation for the fluctuation w ,

w ′ =

√
τ0 −

√
〈τ0〉

κI3/8y
√
〈τ0〉

√
1− y

Re
√

f
, (13)

with the initial condition w = τ0−〈τ0〉
〈τ0〉

(
4.17− 17.39

2Re
√

f

)
, at the

beginning of the buffer layer.
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The Role of Detached Eddies

We discover that we do not get the correct form of the
variation in the buffer layer with attached eddies only
We have to include detached eddies also that have a
different scaling 1/k , from the Kolmogorov scaling
k−2/3

This scaling corresponds to eddies that are shrinking
and speeding up but their energy remains constant
The first figure shows the comparison of the variation
for different Reynolds numbers, experimental and
simulation data, with SCT
The second figure shows the same for the mean
velocity with and without the detached eddies.



Stochastic
Closure in
Turbulence

Birnir

The
Deterministic
versus the
Stochastic
Equation

Homogeneous
Turbulence

The Improved
Closure Model

The Invariant
Measure of
Turbulence

Boundary
Value
Problems

The Spectral
Link

Conclusions

Comparison of SCT, for the Variation, with
Simulations and Experiments
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Figure: The variation 〈w2〉 compared with SCT, for different
Reynolds numbers
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Comparison of SCT, for the Mean Velocity, with
Simulations and Experiments
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Figure: The mean velocity 〈u〉 compared with SCT, for different
Reynolds numbers, top with, bottom without, detached eddies
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Conclusions

The stochastic closure theory for Navier-Stokes
reproduces the statistical theory of K-O with the
intermittency corrections of She-Leveque.
We computed the dependence of the structure
functions of homogeneous turbulence on the
Taylor-Reynolds number.
The theory also produces the n-point probability density
and the Generalized Hyperbolic distributions that are
the velocity distributions of turbulence.
SCT extends to boundary flows, and permit a
computations of the coefficients in the generalized
Prandtl-von Kármán law for the velocity fluctuation
It also permits the development of the full functional
form of the mean velocity, the variations and powers of
the variation, across the viscous, buffer and inertial
layers, and the wake
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The Artist by the Water’s Edge
Leonardo da Vinci Observing Turbulence
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Laminar and Turbulent Flow

The Reynolds Number : Re = UL
ν

In 1883 the mechanical engineer Osborne Reynolds
observed:
"The internal motion of water assumes one or other of
two broadly distinguishable forms-either the elements
of the fluid follow one another along lines of motion
which lead in the most direct manner to their
destination or they eddy about in sinuous paths the
most indirect possible."
These are respectively laminar and turbulent flow
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Images of Turbulence
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Turbulence in Applications
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KOSL Scaling of the Structure Functions, low
order Reλ ∼ 16,000

Figure: The exponents of the structure functions as a function of
order (−1,2], theory or Kolmogorov-Obukov-She-Leveque scaling
(red), experiments (disks), dns simulations (circles), from [4]. The
Kolmogorov-Obukov ’41 scaling is also shown as a blue line for
comparion.
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Higher order structure functions
The third and pth structure functions are:

S3(x , y , t) =
8

C3

∑
k∈Z3

[{ C
2 ck |dk |(1− e−2λk t )(1− e−λk t )

|k |ζ3 + 8π2ν
C |k |

ζ3+ 4
3 + 16π4ν2

C2 |k |ζ3+ 8
3

+

|dk |3(1− e−λk t )3

|k |ζ3 + 12π2ν
C |k |ζ3+ 4

3 + 48π4ν2

C2 |k |ζ3+ 8
3 + 64π6ν3

C3 |k |ζ3+4

}]
×| sin3(πk · (x − y))|.

Sp(x , y , t) =
2p

Cp

∑
k 6=0

Ap × | sinp[πk · (x − y)]|,

Ap =
2

p
2 Γ(p+1

2 )σp
k 1F1(−1

2p, 1
2 ,−

1
2(Mk

σk
)2)

|k |ζp + pkπ2ν
C |k |ζp+ 4

3 +O(ν2)
,

and Mk = |dk |(1− e−λk t ), and σk =
√

(C
2 ck (1− e−2λk t )).
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The wind tunnel generating homogeneous
turbulence
Comparison of the new theory and experiments

The data comes from the Max Planck Institute for
Dynamical and Self-Organization, in Göttingen,
Germany (E. Bodenschatz). It was generated by the
variable density turbulence tunnel (VDTT).
The pressurized gases circulate in the VDTT in an
upright, closed loop. At the upstream end of two test
sections, the free stream is disturbed mechanically.
The data in the current paper is generated by a fixed
grid, but the gas stream can also be disturbed by an
active grid resulting in even higher Reynolds number
turbulence.
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Structure functions for Taylor-Reynolds number
1450

Figure: The Fourth and Sixth Structure Function, log-log scale,
T-R 1450

Figure: The Eight Structure function, log-log scale, T-R 1450
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Onsager’s Observation
The structure functions blow up as R → ∞

The velocity u, lies in Sobolev space Hs, where s = 11
6

when intermittency is not taken into account and s = 29
18

when it is.
This, in turn, implies that ∇u lies in Sobolev space Hs,
where s = 5

6 without intermittency and s = 11
18 with

intermittency, now Hs ⊂ Lp.
This follows, by the Sobolev inequality, provided that

|∇u|p ≤ C‖∇u‖s,

or
5
6
≥ 3

2
− 3

p
.

This is true for p = 2, p = 3, and p = 4, but does not
hold for p = 6 and p = 8.
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The Divergence of the Sixth and Eight
Structure Functions
The data tell us how rough the fluid velocity is

Taylor Reynolds Number 110 264 508 1000 1450
Second 2.09081 1.49402 1.31448 1.07963 .984291
Third 1.79012 1.41339 1.05553 .822192 .730565
Fourth 1.6408 1.09179 .920749 .687336 .595942
Sixth 1.65727 1.08667 .91658 .681818 .592901
Eighth 1.66164 1.06728 .901549 .662111 .577724

Table: The fitted values for m, uncorrected structure functions.

The low value of m is due to the divergence of the sine
series for the Sixth and the Eight Structure Functions.
The Fourth structure function sine series diverges with
intermittency present.
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Formulas for the Mean Velocity and Variation,
in the Inertial Layer

R Reynolds number, η Kolmogorov scale. The spectral
function links all attached eddies of radius less than or
equal to s. Thus we see how energy is transferred from
eddy to eddy into the fluid
In inertial layer, we get formulas for the averaged
velocity U and the variation 〈w2〉, because there I = 1

U =
1

2κ2y
+

2
κ

√
1− y

2Re
√

f
− 2
κ

tanh−1
(√

1− y
2Re
√

f

)
+ K ′,

(14)

w = 2
(
√
τ0 −

√
〈τ0〉)

κ
√
〈τ0〉

√
1−

y

2Re
√

f
− 2

(
√
τ0 −

√
〈τ0〉)

κ
√
〈τ0〉

tanh−1
(√

1−
y

2Re
√

f

)
+ C,

(15)

These formulas allow us to compute the log law for U
and all the even powers of w, and the T-P Constants
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Conclusions

The classical Reynolds decomposition (RANS) of
turbulent flow can be closed by a stochastic
Navier-Stokes equation for the small scale flow
The estimate of the structure functions gives the
Kolmogorov-Obukhov-She-Leveque scaling, and the
intermittency corrections, for homogeneous turbulence
The eddy viscosity can be computed from the small
scale flow, solving the closure problem. This is called
the Stochastic Closure Theory (SCT).
SCT extends to boundary flows, and permit a
computations of the coefficients in the generalized
Prandtl-von Kármán law for the velocity fluctuation
It also permits the development of the full functional
form of the mean velocity, the variations and powers of
the variation, across the viscous, buffer and inertial
layers, and the wake
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